Rationale

Each subject of the technology suite offers the student different experiences which contribute towards their education in technology education. As a result, preparing students for learning in the technology subjects is not just about teaching towards the technology but towards the skills that are fundamental to the technology subjects and are transferable into other areas of their learning. Skills that encourage the student to solve problems through creation, innovation, communication, collaboration and exploration, all of which are developed in an active learning environment where students can advance their ideas from conception to realisation.

Graphics is recognised as the underpinning language of the technology disciplines and is transferable across a wide range of subjects such as mathematics, science and art. Students will use a variety of media to communicate their ideas and designs through this unique language. Throughout the course, students will explore the geometric world to gain an appreciation of the importance of graphics in the world around them. They will develop cognitive and practical skills such as graphical communication, spatial visualisation, creative problem-solving, design capabilities and modelling, both physically and through the use of computer-aided design.

Students will develop their creativity as they investigate and solve design challenges. During the problem-solving process, they will work with their peers to refine their ideas from an abstract concept to a final, detailed, drafted design. Abstraction, and spatial reasoning are fundamental to this process; graphics provides multiple and varied opportunities for students to develop these high level cognitive and creative skills in engaging contexts.

Accurate technical drawings are essential in the design and manufacture of components and artefacts. The need for precise communication in the preparation of a functional document distinguishes technical drawing from the expressive drawing of the visual arts. Producing accurate drawings requires significant attention to detail and a patient and resilient mind-set. Students will continually review and reflect on their working drawings developing strategies for improvement as they progress.

Assessment in Junior Cycle Graphics

Classroom-Based Assessment 1: Communicating through sketching

This Classroom-Based Assessment will provide students with the opportunity to develop their skills to become competent in communicating through sketching. Students will be asked to graphically communicate their ideas using two-dimensional and three-dimensional sketching techniques in response to a chosen stimulus theme.

Through this Classroom-Based Assessment, students will develop their skills in using effective sketching methods and media to accurately communicate their vision, design and solution. This Classroom-Based Assessment is an opportunity to instil in students a curious disposition where they are free to experiment, allowed to take risks, encouraged to explore new and challenging opportunities and to reflect on the process.

On completion of the Classroom-Based Assessments, students undertake a project as part of their final assessment. The project is completed after the second Classroom-Based Assessment in third year. The brief for the project is set and marked by the State Examinations Commission.

Students will be required to complete three outputs:

- Output 1: Responding to a theme informed by the work of Classroom-Based Assessment 2
- Output 2: Dimensioned drawings
- Output 3: Three-dimensional computer-aided design modelling

Learning through engagement with learning outcomes.

Learning outcomes are statements that describe the knowledge, understanding, skills and values students should be able to demonstrate having studied Graphics in junior cycle Learning outcomes to be experienced over three years

This Classroom-Based Assessment will focus on how effectively students present their research graphically. It will inform the project assessment element (see below). Through this CBA, students research and investigate the domain in which the project is situated and present their findings graphically through any appropriate graphical media. This enables them to develop the concepts for their final project in a real-life context prior to starting their work on the project.
This Classroom-Based Assessment is an opportunity to instil in students a curious disposition, where they are free to experiment, encouraged to explore new and challenging opportunities and to reflect on the process.

Students will sit a two-hour examination at the end of third year and this will be offered at a common level.

The examination will be prepared and marked by the State Examinations Commission.

In this strand, students will engage with, understand and apply the fundamental concepts and principles of 2D constructions, 2D shapes and projection systems. Throughout their studies, students will gain an appreciation of the application of 2D graphics to problem solving and develop an understanding of the role of 2D graphics in the creation of 3D objects and representations. Students should, as a result, be able to create clear representations of objects in space and accurately represent these in two- dimensions.

Strand 2: 3D Graphics

In this strand, students will engage with, understand and use the fundamental concepts and principles underpinning 3D objects, modelling systems and graphical conventions. This strand is of specific importance in developing each student's ability in visual imagery and representation. Students should as a result be able to accurately represent objects in three dimensions and apply these skills to problem solving.
solving.

Plane figures in the world around us:

Plane figures are flat 2-dimensional shapes which can be made up of straight lines, curves and a combination of both. When we look at everyday objects, we recognise plane figures such as circles, triangles and squares depending on the number of sides the shape has.
Complete the activities shown on the right.

Identify how many images contain the following shapes within them.

List the geometric properties of that shape.

Circle: \qquad
Properties:

Triangle: \quad Properties:

Properties:

Square:
quare: Properties:

Rectangle:
Properties:

Using tracing paper sketch the outline of each shape listed above using the provided images.

Bisecting line segments and angles*

Find the perpendicular bisector for each of the following line segments.
a

Shown below are a rectangle and isosceles triangle. These are outlines of material to design and make paper aeroplanes. Using your drawing equipment, draw in the fold lines needed to make the aeroplanes.

Shade or colour the aeroplanes. Cut out the designs and test your aeroplanes!

Find the angle bisector in each case below

Shown in figure 1 below is a logo for a cricket club. Also shown is an incomplete drawing of the logo, figure 2. Find the centre of the missing stump in figure $\mathbf{2}$ by finding the midpoint of the line ab. All construction must be clearly shown
gure 1

a

The outline plan for lining a soccer pitch is shown below. An incomplete drawing of the pitch is also shown. Draw in the missing midfield line and centre circle. All construction must be clearly shown.

The outline plan of a garden is shown below. It is proposed to lay a footpath from corner A to corner B. The footpath must be equidistant from the edges of the garden. Draw in the centreline
of this footpath. All construction must be clearly shown.

The design for a sail on a yacht is shown below in figure 1. It is based on a triangle and a circle. The circle is known as an 'incircle'. Complete the drawing in figure 2.
All constructions must be clearly shown.*

Figure 1

The outline plan of a circular garden pond is shown above. It is proposed to put a fountain in the centre of the pond. Find the centre of the pond. All construction must be clearly shown.* and it is suggested that this crossover be discussed with members of your school's mathematics department

Tangram Challenge

A tangram is a seven-piece puzzle which originated in China. It is basically a jigsaw that is made up of geometric shapes that can be cut from a single square as shown in figure 1 . The shapes are a square, 2 large triangles, 2 small triangles, 1 medium triangle and a rhomboid. The medium-sized triangle and the square and the rhomboid are all twice the area of the small triangles; the area of the large triangles is four times the area of the smaller triangles.
Using the diagram in figure $\mathbf{1}$ as a guide, complete the tangram layout in figure 2.

Figure 1
Identify the following:

Diagonal
Parallel
Vertical,
45° Angle
Parallelogram

Figure 2

How many triangles can you see

On a 140 mm piece of square card draw out the Tangram puzzle and carefully cut out the pieces as shown in figure 3. Complete the exercises on the next page using the tangram pieces. The first few exercises have the outline of the shapes put in to help you.

Figure 3

Complete the following exercises using the tangram pieces you have cut out. The first one is completed for you.

Create a list of geometric properties for each of the four shapes below. Can you create each shape using all the tangram pieces? Use your list to verify the shapes you have created have the correct geometric properties

Shape	Rectangle	Parallelogram	Isosceles Triangle	Trapezium
Geometric properties of shapes use sketches, symbols or text				

Group	A	B	C	D
Object 1	2VX X51	YVB BYG	WKP PXM	BL5 5YX
Object 2	JYJ JM5	EX6 Q2M	920 EBO	55M LPB
Object 3	R64 DQ5	P4P 1G2	EXR 6XY	$\underline{0} \mathrm{VX}$ PVK
Object 4	NVP YVM	P4P 1W8	MY8 8WM	1YQ Qob
$\underline{\mathbf{0}}=$ This represents the number zero and shows up as $\boldsymbol{\theta}$ in the app screen				

Activity 1 - Using your device, merge cube and table of codes;
Sketch the orthographic views of the objects in the colour coded boxes.

Activity 3 - As a group construct a 3D model of object 1.

QR code for Padlet

Overview Links Activity

In table 1 below, outline examples from today's workshop where you feel you may have engaged with or seen relevant examples of learning for the Statements of Learning (SOL) shown below. With the key skills for junior cycle, highlight any elements within each skill that you feel you engaged with through the course of the day.

TABLE 1: LINKS BETWEEN JUNIOR CYCLE GRAPHICS AND THE STATEMENTS OF LEARNING

The statement	
sol 15: Recognises the potential uses of mathematical knowledge, skills and understanding in all areas of learning	
sol 19: Values the role and contribution of	
science and technology to society, and their relevant learning	
personal, social and global importance	
sol 20: Uses appropriate technologies in meeting a design challenge	
sol 21: Applies practical skills as she/ he develops models and products using a variety of materials and technologies	
sol 23: Brings an idea from conception to Realisation	
sol 24: Uses technology and digital media tools to learn, work and think collaboratively and creatively in a responsible and ethical manner	

Sketch in 3D, objects that would have the elevation and plan shown

Back to school...next steps

What I must do...

What I could do...

What new strategies could I use in my classroom...

An tSraith Shóisearach do Mhúinteoir JuniorCYCLE for teachers

Contact Details

Administrative Office:
Monaghan Ed. Centre,
Armagh Road,
Monaghan.
www.metc.ie

For all queries please contact:
info@jct.ie

Follow us on Twitter:
@JCforTeachers
@JCt4ed

Director's Office:
LMETB,
Chapel Street,
Dundalk

Key websites:
\square
www.jct.ie
www.curriculumonline.ie
www.ncca.ie

